
A Discontinuity Capturing Shallow Neural
Network for Anisotropic Elliptic Interface Problems

Wei-Fan Hu
wfhu@math.ncu.edu.tw

Department of Mathematics
National Central University

Taiwan

Anisotropic Elliptic Interface Problems

The d-dimensional anisotropic elliptic interface problem is described by

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

∇ ⋅ (A(x)∇u(x)) − λ(x)u(x) = f (x) in Ω =
L

⋃
`=0

Ω` ⊂ Rd

[u] = v`, [A∇u ⋅ n] = w` on Γ` ⊂ Rd−1 for ` = 1,2,⋯,L

u(x) = g(x) on ∂Ω ⊂ Rd−1

A(x) ∈ Rd×d is symmetric positive definite and λ > 0
[⋅] denotes the quantity of jump discontinuity
Obviously, the solution u is discontinuous across all interfaces

L-Layer Deep Neural Network Architecture

Define x[0] = x and Nk(x
[k−1]) =W [k]x[k−1] + b[k]

Neural network approximator uN (x) = NL−1 ○ (σ ○NL−2) ○ ⋯ ○ (σ ○N1)(x)

uN consists of composition of continuous functions, so uN is continuous

Question: How to approximate a discontinuous function
using neural net approximation?

L-Layer Deep Neural Network Architecture

Define x[0] = x and Nk(x
[k−1]) =W [k]x[k−1] + b[k]

Neural network approximator uN (x) = NL−1 ○ (σ ○NL−2) ○ ⋯ ○ (σ ○N1)(x)

uN consists of composition of continuous functions, so uN is continuous

Question: How to approximate a discontinuous function
using neural net approximation?

L-Layer Deep Neural Network Architecture

Define x[0] = x and Nk(x
[k−1]) =W [k]x[k−1] + b[k]

Neural network approximator uN (x) = NL−1 ○ (σ ○NL−2) ○ ⋯ ○ (σ ○N1)(x)

uN consists of composition of continuous functions, so uN is continuous

Question: How to approximate a discontinuous function
using neural net approximation?

L-Layer Deep Neural Network Architecture

Define x[0] = x and Nk(x
[k−1]) =W [k]x[k−1] + b[k]

Neural network approximator uN (x) = NL−1 ○ (σ ○NL−2) ○ ⋯ ○ (σ ○N1)(x)

uN consists of composition of continuous functions, so uN is continuous

Question: How to approximate a discontinuous function
using neural net approximation?

L-Layer Deep Neural Network Architecture

Define x[0] = x and Nk(x
[k−1]) =W [k]x[k−1] + b[k]

Neural network approximator uN (x) = NL−1 ○ (σ ○NL−2) ○ ⋯ ○ (σ ○N1)(x)

uN consists of composition of continuous functions, so uN is continuous

Question: How to approximate a discontinuous function
using neural net approximation?

Continuous Function Extension

Consider a d-dimensional, piecewise continuous, scalar function u(x) in the
domain Ω = Ω− ∪Ω+ defined by

u(x) = {
u−(x) if x ∈ Ω−

u+(x) if x ∈ Ω+

where u− and u+ are both smooth functions in their corresponding
subdomains

Define the (d + 1)-dimensional function using the augmentation variable
(x, z) as

uN (x, z) = {
u−(x) if z = −1
u+(x) if z = 1

where x ∈ Ω and z ∈ R
Note that, both u− and u+ are now regarded as smooth extension over the
entire domain Ω, so the augmented function uN (x, z) is assumed to be
continuous on the domain Ω ×R
u can be rewritten in terms of the augmented function as

u(x) = {
uN (x,−1) if x ∈ Ω−

uN (x,1) if x ∈ Ω+

Continuous Function Extension

Consider a d-dimensional, piecewise continuous, scalar function u(x) in the
domain Ω = Ω− ∪Ω+ defined by

u(x) = {
u−(x) if x ∈ Ω−

u+(x) if x ∈ Ω+

where u− and u+ are both smooth functions in their corresponding
subdomains
Define the (d + 1)-dimensional function using the augmentation variable
(x, z) as

uN (x, z) = {
u−(x) if z = −1
u+(x) if z = 1

where x ∈ Ω and z ∈ R

Note that, both u− and u+ are now regarded as smooth extension over the
entire domain Ω, so the augmented function uN (x, z) is assumed to be
continuous on the domain Ω ×R
u can be rewritten in terms of the augmented function as

u(x) = {
uN (x,−1) if x ∈ Ω−

uN (x,1) if x ∈ Ω+

Continuous Function Extension

Consider a d-dimensional, piecewise continuous, scalar function u(x) in the
domain Ω = Ω− ∪Ω+ defined by

u(x) = {
u−(x) if x ∈ Ω−

u+(x) if x ∈ Ω+

where u− and u+ are both smooth functions in their corresponding
subdomains
Define the (d + 1)-dimensional function using the augmentation variable
(x, z) as

uN (x, z) = {
u−(x) if z = −1
u+(x) if z = 1

where x ∈ Ω and z ∈ R
Note that, both u− and u+ are now regarded as smooth extension over the
entire domain Ω, so the augmented function uN (x, z) is assumed to be
continuous on the domain Ω ×R

u can be rewritten in terms of the augmented function as

u(x) = {
uN (x,−1) if x ∈ Ω−

uN (x,1) if x ∈ Ω+

Continuous Function Extension

Consider a d-dimensional, piecewise continuous, scalar function u(x) in the
domain Ω = Ω− ∪Ω+ defined by

u(x) = {
u−(x) if x ∈ Ω−

u+(x) if x ∈ Ω+

where u− and u+ are both smooth functions in their corresponding
subdomains
Define the (d + 1)-dimensional function using the augmentation variable
(x, z) as

uN (x, z) = {
u−(x) if z = −1
u+(x) if z = 1

where x ∈ Ω and z ∈ R
Note that, both u− and u+ are now regarded as smooth extension over the
entire domain Ω, so the augmented function uN (x, z) is assumed to be
continuous on the domain Ω ×R
u can be rewritten in terms of the augmented function as

u(x) = {
uN (x,−1) if x ∈ Ω−

uN (x,1) if x ∈ Ω+

Let u(x) = {
u−(x) = sin(2πx) if x ∈ [0, 1

2
)

u+(x) = cos(2πx) if x ∈ [1
2
,1]

We can simply find uN (x , z) = 1−z
2
u−(x) + 1+z

2
u+(x)

There exists infinitely many such a function that has its restriction to be u

Piecewise continuous functions with arbitrary many pieces can be done by
simply labelling various z values

Remaining issue: How to construct the augmented function uN
using an approximation of neural network?

Let u(x) = {
u−(x) = sin(2πx) if x ∈ [0, 1

2
)

u+(x) = cos(2πx) if x ∈ [1
2
,1]

We can simply find uN (x , z) = 1−z
2
u−(x) + 1+z

2
u+(x)

There exists infinitely many such a function that has its restriction to be u

Piecewise continuous functions with arbitrary many pieces can be done by
simply labelling various z values

Remaining issue: How to construct the augmented function uN
using an approximation of neural network?

Let u(x) = {
u−(x) = sin(2πx) if x ∈ [0, 1

2
)

u+(x) = cos(2πx) if x ∈ [1
2
,1]

We can simply find uN (x , z) = 1−z
2
u−(x) + 1+z

2
u+(x)

There exists infinitely many such a function that has its restriction to be u

Piecewise continuous functions with arbitrary many pieces can be done by
simply labelling various z values

Remaining issue: How to construct the augmented function uN
using an approximation of neural network?

Let u(x) = {
u−(x) = sin(2πx) if x ∈ [0, 1

2
)

u+(x) = cos(2πx) if x ∈ [1
2
,1]

We can simply find uN (x , z) = 1−z
2
u−(x) + 1+z

2
u+(x)

There exists infinitely many such a function that has its restriction to be u

Piecewise continuous functions with arbitrary many pieces can be done by
simply labelling various z values

Remaining issue: How to construct the augmented function uN
using an approximation of neural network?

Let u(x) = {
u−(x) = sin(2πx) if x ∈ [0, 1

2
)

u+(x) = cos(2πx) if x ∈ [1
2
,1]

We can simply find uN (x , z) = 1−z
2
u−(x) + 1+z

2
u+(x)

There exists infinitely many such a function that has its restriction to be u

Piecewise continuous functions with arbitrary many pieces can be done by
simply labelling various z values

Remaining issue: How to construct the augmented function uN
using an approximation of neural network?

Discontinuity Capturing Shallow Neural Network

DCSNN approximator uN (x, z) =W [2]σ(W [1][x, z] + b[1]) + b[2]

N neurons are employed in the hidden layer

Weight: W [1] ∈ RN×(d+1), W [2] ∈ R1×N ; bias: b[1] ∈ RN×1, b[2] ∈ R
Total number of parameters Np = (d + 3)N + 1

Discontinuity Capturing Shallow Neural Network

DCSNN approximator uN (x, z) =W [2]σ(W [1][x, z] + b[1]) + b[2]

N neurons are employed in the hidden layer

Weight: W [1] ∈ RN×(d+1), W [2] ∈ R1×N ; bias: b[1] ∈ RN×1, b[2] ∈ R
Total number of parameters Np = (d + 3)N + 1

Discontinuity Capturing Shallow Neural Network

DCSNN approximator uN (x, z) =W [2]σ(W [1][x, z] + b[1]) + b[2]

N neurons are employed in the hidden layer

Weight: W [1] ∈ RN×(d+1), W [2] ∈ R1×N ; bias: b[1] ∈ RN×1, b[2] ∈ R
Total number of parameters Np = (d + 3)N + 1

Discontinuity Capturing Shallow Neural Network

DCSNN approximator uN (x, z) =W [2]σ(W [1][x, z] + b[1]) + b[2]

N neurons are employed in the hidden layer

Weight: W [1] ∈ RN×(d+1), W [2] ∈ R1×N ; bias: b[1] ∈ RN×1, b[2] ∈ R

Total number of parameters Np = (d + 3)N + 1

Discontinuity Capturing Shallow Neural Network

DCSNN approximator uN (x, z) =W [2]σ(W [1][x, z] + b[1]) + b[2]

N neurons are employed in the hidden layer

Weight: W [1] ∈ RN×(d+1), W [2] ∈ R1×N ; bias: b[1] ∈ RN×1, b[2] ∈ R
Total number of parameters Np = (d + 3)N + 1

Training Method: Levenberg-Marquardt Method

Collecting all training parameters in the vector p ∈ RNp

Given training points {(xi , z i)}Mi=1, where z i is determined by identifying the
category of xi , and target outputs {u(xi)}Mi=1

All training parameters can be learned via minimizing the mean squared error

Loss(p) =
1

M

M

∑
i=1

(u(xi) − uN (xi , z i ;p))
2

Levenberg-Marquardt method

p(k+1)
= p(k)

+ (JT J + µI)
−1

[JT (u − uN (p(k)
))]

´¹¹¹¸¹¹¹¶
− 1

2∇Loss(p(k))

Jacobian matrix J = ∂uN /∂p ∈ RM×Np (typically M > Np); the computation of
J can be done using auto differentiation

The linear system (the second term) in each iteration is solved using Singular
Value Decomposition or Cholesky factorization

Training Method: Levenberg-Marquardt Method

Collecting all training parameters in the vector p ∈ RNp

Given training points {(xi , z i)}Mi=1, where z i is determined by identifying the
category of xi , and target outputs {u(xi)}Mi=1

All training parameters can be learned via minimizing the mean squared error

Loss(p) =
1

M

M

∑
i=1

(u(xi) − uN (xi , z i ;p))
2

Levenberg-Marquardt method

p(k+1)
= p(k)

+ (JT J + µI)
−1

[JT (u − uN (p(k)
))]

´¹¹¹¸¹¹¹¶
− 1

2∇Loss(p(k))

Jacobian matrix J = ∂uN /∂p ∈ RM×Np (typically M > Np); the computation of
J can be done using auto differentiation

The linear system (the second term) in each iteration is solved using Singular
Value Decomposition or Cholesky factorization

Training Method: Levenberg-Marquardt Method

Collecting all training parameters in the vector p ∈ RNp

Given training points {(xi , z i)}Mi=1, where z i is determined by identifying the
category of xi , and target outputs {u(xi)}Mi=1

All training parameters can be learned via minimizing the mean squared error

Loss(p) =
1

M

M

∑
i=1

(u(xi) − uN (xi , z i ;p))
2

Levenberg-Marquardt method

p(k+1)
= p(k)

+ (JT J + µI)
−1

[JT (u − uN (p(k)
))]

´¹¹¹¸¹¹¹¶
− 1

2∇Loss(p(k))

Jacobian matrix J = ∂uN /∂p ∈ RM×Np (typically M > Np); the computation of
J can be done using auto differentiation

The linear system (the second term) in each iteration is solved using Singular
Value Decomposition or Cholesky factorization

Training Method: Levenberg-Marquardt Method

Collecting all training parameters in the vector p ∈ RNp

Given training points {(xi , z i)}Mi=1, where z i is determined by identifying the
category of xi , and target outputs {u(xi)}Mi=1

All training parameters can be learned via minimizing the mean squared error

Loss(p) =
1

M

M

∑
i=1

(u(xi) − uN (xi , z i ;p))
2

Levenberg-Marquardt method

p(k+1)
= p(k)

+ (JT J + µI)
−1

[JT (u − uN (p(k)
))]

´¹¹¹¸¹¹¹¶
− 1

2∇Loss(p(k))

Jacobian matrix J = ∂uN /∂p ∈ RM×Np (typically M > Np); the computation of
J can be done using auto differentiation

The linear system (the second term) in each iteration is solved using Singular
Value Decomposition or Cholesky factorization

Training Method: Levenberg-Marquardt Method

Collecting all training parameters in the vector p ∈ RNp

Given training points {(xi , z i)}Mi=1, where z i is determined by identifying the
category of xi , and target outputs {u(xi)}Mi=1

All training parameters can be learned via minimizing the mean squared error

Loss(p) =
1

M

M

∑
i=1

(u(xi) − uN (xi , z i ;p))
2

Levenberg-Marquardt method

p(k+1)
= p(k)

+ (JT J + µI)
−1

[JT (u − uN (p(k)
))]

´¹¹¹¸¹¹¹¶
− 1

2∇Loss(p(k))

Jacobian matrix J = ∂uN /∂p ∈ RM×Np (typically M > Np); the computation of
J can be done using auto differentiation

The linear system (the second term) in each iteration is solved using Singular
Value Decomposition or Cholesky factorization

Testing Example

The 1D target function is given by u(x) = {
sin(2πx) if x ∈ [0, 1

2
)

cos(2πx) if x ∈ [1
2
,1]

Only N = 5 neurons are used in the hidden layer, thus the total number of
parameters Np = 21

100 randomly sampled training points in the interval [0,1]

Sigmoid activation function

Terminate the training iteration when Loss(p) < 10−12

0.1 0.3 0.5 0.7 0.9

-1

-0.5

0

0.5

1

\phi

0.1 0.3 0.5 0.7 0.9
0

1

2

3

4

5

6
10

-7

0.1 0.3 0.5 0.7 0.9

-1

-0.5

0

0.5

1

Testing Example

The 1D target function is given by u(x) = {
sin(2πx) if x ∈ [0, 1

2
)

cos(2πx) if x ∈ [1
2
,1]

Only N = 5 neurons are used in the hidden layer, thus the total number of
parameters Np = 21

100 randomly sampled training points in the interval [0,1]

Sigmoid activation function

Terminate the training iteration when Loss(p) < 10−12

0.1 0.3 0.5 0.7 0.9

-1

-0.5

0

0.5

1

\phi

0.1 0.3 0.5 0.7 0.9
0

1

2

3

4

5

6
10

-7

0.1 0.3 0.5 0.7 0.9

-1

-0.5

0

0.5

1

Theorem (Meer et al. 2021)

Consider the well-posed PDE of order k given by

⎧⎪⎪
⎨
⎪⎪⎩

L(u) = f in the domain Ω,

B(u) = g on the boundary ∂Ω.

Let the exact solution of this PDE be given by u and let the loss functional be
given by

Loss(û) =
1

∣Ω∣
∫

Ω
∣L(û) − f ∣2 dx +

1

∣∂Ω∣
∫
∂Ω

∣B(û) − g ∣2 dx.

Consider some approximate solution û of which the first k (partial) derivatives
exist and have finite L2 norm. Then, for any ε > 0 there exists a δ(ε) > 0 such that

Loss(û) < δÔ⇒ ∥û − u∥ < ε.

Physics-Informed Learning Machine

Recall

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

∇ ⋅ (A(x)∇u(x)) − λ(x)u(x) = f (x) in Ω =
L

⋃
`=0

Ω` ⊂ Rd

[u] = v`, [A∇u ⋅ n] = w` on Γ` ⊂ Rd−1 for ` = 1,2,⋯,L

u(x) = g(x) on ∂Ω ⊂ Rd−1

[uN] = uN (x, z0) − uN (x, z`) for x ∈ Γ; the same manner applies for
[A∇xuN ⋅ n]

Given training points {(xi , z i)}Mi=1 in Ω, {xj∂Ω}
Mb

j=1 on ∂Ω, and {xkΓ`
}
MΓ`

k=1 along
Γ`

Solving the differential equation is converted to the optimization problem

Loss(p) =
1

M

M

∑
i=1

[∇x ⋅ (A(xi)∇xuN (xi , z i)) − λ(xi)uN (xi , z i) − f (xi)]
2

+
1

Mb

Mb

∑
j=1

[uN (xj∂Ω, z0) − g(xj∂Ω)]
2

+
L

∑
`=1

1

MΓ`

⎛

⎝

MΓ`

∑
k=1

([uN] − v`(x
k
Γ`
))

2
+ ([A∇xuN ⋅ n] −w`(x

k
Γ`
))

2⎞

⎠

Physics-Informed Learning Machine

Recall

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

∇ ⋅ (A(x)∇u(x)) − λ(x)u(x) = f (x) in Ω =
L

⋃
`=0

Ω` ⊂ Rd

[u] = v`, [A∇u ⋅ n] = w` on Γ` ⊂ Rd−1 for ` = 1,2,⋯,L

u(x) = g(x) on ∂Ω ⊂ Rd−1

[uN] = uN (x, z0) − uN (x, z`) for x ∈ Γ; the same manner applies for
[A∇xuN ⋅ n]

Given training points {(xi , z i)}Mi=1 in Ω, {xj∂Ω}
Mb

j=1 on ∂Ω, and {xkΓ`
}
MΓ`

k=1 along
Γ`

Solving the differential equation is converted to the optimization problem

Loss(p) =
1

M

M

∑
i=1

[∇x ⋅ (A(xi)∇xuN (xi , z i)) − λ(xi)uN (xi , z i) − f (xi)]
2

+
1

Mb

Mb

∑
j=1

[uN (xj∂Ω, z0) − g(xj∂Ω)]
2

+
L

∑
`=1

1

MΓ`

⎛

⎝

MΓ`

∑
k=1

([uN] − v`(x
k
Γ`
))

2
+ ([A∇xuN ⋅ n] −w`(x

k
Γ`
))

2⎞

⎠

Physics-Informed Learning Machine

Recall

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

∇ ⋅ (A(x)∇u(x)) − λ(x)u(x) = f (x) in Ω =
L

⋃
`=0

Ω` ⊂ Rd

[u] = v`, [A∇u ⋅ n] = w` on Γ` ⊂ Rd−1 for ` = 1,2,⋯,L

u(x) = g(x) on ∂Ω ⊂ Rd−1

[uN] = uN (x, z0) − uN (x, z`) for x ∈ Γ; the same manner applies for
[A∇xuN ⋅ n]

Given training points {(xi , z i)}Mi=1 in Ω, {xj∂Ω}
Mb

j=1 on ∂Ω, and {xkΓ`
}
MΓ`

k=1 along
Γ`

Solving the differential equation is converted to the optimization problem

Loss(p) =
1

M

M

∑
i=1

[∇x ⋅ (A(xi)∇xuN (xi , z i)) − λ(xi)uN (xi , z i) − f (xi)]
2

+
1

Mb

Mb

∑
j=1

[uN (xj∂Ω, z0) − g(xj∂Ω)]
2

+
L

∑
`=1

1

MΓ`

⎛

⎝

MΓ`

∑
k=1

([uN] − v`(x
k
Γ`
))

2
+ ([A∇xuN ⋅ n] −w`(x

k
Γ`
))

2⎞

⎠

Physics-Informed Learning Machine

Recall

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

∇ ⋅ (A(x)∇u(x)) − λ(x)u(x) = f (x) in Ω =
L

⋃
`=0

Ω` ⊂ Rd

[u] = v`, [A∇u ⋅ n] = w` on Γ` ⊂ Rd−1 for ` = 1,2,⋯,L

u(x) = g(x) on ∂Ω ⊂ Rd−1

[uN] = uN (x, z0) − uN (x, z`) for x ∈ Γ; the same manner applies for
[A∇xuN ⋅ n]

Given training points {(xi , z i)}Mi=1 in Ω, {xj∂Ω}
Mb

j=1 on ∂Ω, and {xkΓ`
}
MΓ`

k=1 along
Γ`

Solving the differential equation is converted to the optimization problem

Loss(p) =
1

M

M

∑
i=1

[∇x ⋅ (A(xi)∇xuN (xi , z i)) − λ(xi)uN (xi , z i) − f (xi)]
2

+
1

Mb

Mb

∑
j=1

[uN (xj∂Ω, z0) − g(xj∂Ω)]
2

+
L

∑
`=1

1

MΓ`

⎛

⎝

MΓ`

∑
k=1

([uN] − v`(x
k
Γ`
))

2
+ ([A∇xuN ⋅ n] −w`(x

k
Γ`
))

2⎞

⎠

Example 1: 2D Problem with Regular Domain

Domain Ω = [−1,1] × [−1,1] and interface Γ ∶ (x1

0.5
)

2
+ (x2

0.5
)

2
= 1

We set

u(x1, x2) = {
u0 = x2

1 + x2
2 if (x1, x2) ∈ Ω0

u1 = exp(x1) cos(x2) if (x1, x2) ∈ Ω1

A(x1, x2) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

A0 = 1000 [
x2

1 + x2
2 + 1 x2

1 + x2
2

x2
1 + x2

2 x2
1 + x2

2 + 2
] if (x1, x2) ∈ Ω0,

A1 =
1

1000
A0 if (x1, x2) ∈ Ω1,

λ(x1, x2) = {
λ0 = 1000 exp(x1)(x

2
1 + x2

2 + 3) sin(x2) if (x1, x2) ∈ Ω0,
λ1 =

1
1000

λ0 if (x1, x2) ∈ Ω1.

M = 225 interior points in the computational domain Ω
Mb = 60 points on the boundary ∂Ω
MΓ = 60 points on the interface Γ

Ndeg ∥uIIM − u∥∞ (N, Np) ∥uN − u∥∞ ∥uN − u∥2

65536 8.008E−05 (30, 150) 5.259E−05 9.038E−06
262144 2.091E−05 (40, 200) 1.661E−05 2.352E−06

Table: u: Exact solution. uIIM : Solution obtained by IIM. Ndeg = 65536 and 262144
correspond to m = 256 and m = 512. uN : Solution obtained from DCSNN model.

Ndeg ∥uIIM − u∥∞ (N, Np) ∥uN − u∥∞ ∥uN − u∥2

65536 8.008E−05 (30, 150) 5.259E−05 9.038E−06
262144 2.091E−05 (40, 200) 1.661E−05 2.352E−06

Table: u: Exact solution. uIIM : Solution obtained by IIM. Ndeg = 65536 and 262144
correspond to m = 256 and m = 512. uN : Solution obtained from DCSNN model.

Example 2: 2D Problem with complicated geometry

Ndeg ∥uFEM − u∥∞ ∥∇uFEM −∇u∥∞ (N, Np) ∥uN − u∥∞ ∥∇uN −∇u∥∞
25600 9.400E−05 1.433E−03 (10, 50) 3.490E−06 6.087E−06
102400 2.600E−05 6.890E−04 (20, 100) 1.998E−07 6.318E−07

Table: u: Exact solution. uFEM : Solution obtained by FEM. Ndeg = 25600 and 102400
correspond to m = 160 and m = 320. uN : Solution obtained from DCSNN model.

Example 3: 3D Problem

The exact solution is chosen as

u(x1, x2, x3) =

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

u0 = exp(x1 + x2 + x3) if (x1, x2, x3) ∈ Ω0,
u1 = sin x1 sin x2 sin x3 if (x1, x2, x3) ∈ Ω1,
u2 = cos x1 cos x2 cos x3 if (x1, x2, x3) ∈ Ω2,
u3 = cosh x1 cosh x2 cosh x3 if (x1, x2, x3) ∈ Ω3,
u4 = sinh x1 sinh x2 sinh x3 if (x1, x2, x3) ∈ Ω4.

(N, Np) ∥uN − u∥∞ ∥uN − u∥2

(40, 240) 2.337E−04 3.696E−05
(50, 300) 1.951E−05 4.715E−06

Table: u: Exact solution. uN : Solution obtained from DCSNN model.

References

1. W.-F. Hu, T.-S. Lin, and M.-C. Lai
A discontinuity capturing shallow neural network for elliptic interface problems

arXiv: 2106.05587

2. W.-F. Hu, T.-S. Lin, and M.-C. Lai
Solving anisotropic elliptic interface problems by machine learning
in preparation

Thank you for your attention!

