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Anisotropic Elliptic Interface Problems

The d-dimensional anisotropic elliptic interface problem is described by

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

∇ ⋅ (A(x)∇u(x)) − λ(x)u(x) = f (x) in Ω =
L

⋃
`=0

Ω` ⊂ Rd

[u] = v`, [A∇u ⋅ n] = w` on Γ` ⊂ Rd−1 for ` = 1,2,⋯,L

u(x) = g(x) on ∂Ω ⊂ Rd−1

A(x) ∈ Rd×d is symmetric positive definite and λ > 0
[⋅] denotes the quantity of jump discontinuity
Obviously, the solution u is discontinuous across all interfaces



L-Layer Deep Neural Network Architecture

Define x[0] = x and Nk(x
[k−1]) =W [k]x[k−1] + b[k]

Neural network approximator uN (x) = NL−1 ○ (σ ○NL−2) ○ ⋯ ○ (σ ○N1)(x)

uN consists of composition of continuous functions, so uN is continuous

Question: How to approximate a discontinuous function
using neural net approximation?
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Continuous Function Extension

Consider a d-dimensional, piecewise continuous, scalar function u(x) in the
domain Ω = Ω− ∪Ω+ defined by

u(x) = {
u−(x) if x ∈ Ω−

u+(x) if x ∈ Ω+

where u− and u+ are both smooth functions in their corresponding
subdomains

Define the (d + 1)-dimensional function using the augmentation variable
(x, z) as

uN (x, z) = {
u−(x) if z = −1
u+(x) if z = 1

where x ∈ Ω and z ∈ R
Note that, both u− and u+ are now regarded as smooth extension over the
entire domain Ω, so the augmented function uN (x, z) is assumed to be
continuous on the domain Ω ×R
u can be rewritten in terms of the augmented function as

u(x) = {
uN (x,−1) if x ∈ Ω−

uN (x,1) if x ∈ Ω+
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Let u(x) = {
u−(x) = sin(2πx) if x ∈ [0, 1

2
)

u+(x) = cos(2πx) if x ∈ [ 1
2
,1]

We can simply find uN (x , z) = 1−z
2
u−(x) + 1+z

2
u+(x)

There exists infinitely many such a function that has its restriction to be u

Piecewise continuous functions with arbitrary many pieces can be done by
simply labelling various z values

Remaining issue: How to construct the augmented function uN
using an approximation of neural network?
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Discontinuity Capturing Shallow Neural Network

DCSNN approximator uN (x, z) =W [2]σ(W [1][x, z] + b[1]) + b[2]

N neurons are employed in the hidden layer

Weight: W [1] ∈ RN×(d+1), W [2] ∈ R1×N ; bias: b[1] ∈ RN×1, b[2] ∈ R
Total number of parameters Np = (d + 3)N + 1
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Training Method: Levenberg-Marquardt Method

Collecting all training parameters in the vector p ∈ RNp

Given training points {(xi , z i)}Mi=1, where z i is determined by identifying the
category of xi , and target outputs {u(xi)}Mi=1

All training parameters can be learned via minimizing the mean squared error

Loss(p) =
1

M

M

∑
i=1

(u(xi) − uN (xi , z i ;p))
2

Levenberg-Marquardt method

p(k+1)
= p(k)

+ (JT J + µI)
−1

[JT (u − uN (p(k)
))]

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
− 1

2∇Loss(p(k))

Jacobian matrix J = ∂uN /∂p ∈ RM×Np (typically M > Np); the computation of
J can be done using auto differentiation

The linear system (the second term) in each iteration is solved using Singular
Value Decomposition or Cholesky factorization
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Testing Example

The 1D target function is given by u(x) = {
sin(2πx) if x ∈ [0, 1

2
)

cos(2πx) if x ∈ [ 1
2
,1]

Only N = 5 neurons are used in the hidden layer, thus the total number of
parameters Np = 21

100 randomly sampled training points in the interval [0,1]

Sigmoid activation function

Terminate the training iteration when Loss(p) < 10−12
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Theorem (Meer et al. 2021)

Consider the well-posed PDE of order k given by

⎧⎪⎪
⎨
⎪⎪⎩

L(u) = f in the domain Ω,

B(u) = g on the boundary ∂Ω.

Let the exact solution of this PDE be given by u and let the loss functional be
given by

Loss(û) =
1

∣Ω∣
∫

Ω
∣L(û) − f ∣2 dx +

1

∣∂Ω∣
∫
∂Ω

∣B(û) − g ∣2 dx.

Consider some approximate solution û of which the first k (partial) derivatives
exist and have finite L2 norm. Then, for any ε > 0 there exists a δ(ε) > 0 such that

Loss(û) < δÔ⇒ ∥û − u∥ < ε.



Physics-Informed Learning Machine

Recall

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

∇ ⋅ (A(x)∇u(x)) − λ(x)u(x) = f (x) in Ω =
L

⋃
`=0

Ω` ⊂ Rd

[u] = v`, [A∇u ⋅ n] = w` on Γ` ⊂ Rd−1 for ` = 1,2,⋯,L

u(x) = g(x) on ∂Ω ⊂ Rd−1

[uN ] = uN (x, z0) − uN (x, z`) for x ∈ Γ; the same manner applies for
[A∇xuN ⋅ n]

Given training points {(xi , z i)}Mi=1 in Ω, {xj∂Ω}
Mb

j=1 on ∂Ω, and {xkΓ`
}
MΓ`

k=1 along
Γ`

Solving the differential equation is converted to the optimization problem

Loss(p) =
1

M

M

∑
i=1

[∇x ⋅ (A(xi)∇xuN (xi , z i)) − λ(xi)uN (xi , z i) − f (xi)]
2

+
1

Mb

Mb

∑
j=1

[uN (xj∂Ω, z0) − g(xj∂Ω)]
2

+
L

∑
`=1

1

MΓ`

⎛

⎝

MΓ`

∑
k=1

([uN ] − v`(x
k
Γ`
))

2
+ ([A∇xuN ⋅ n] −w`(x

k
Γ`
))

2⎞

⎠
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Example 1: 2D Problem with Regular Domain

Domain Ω = [−1,1] × [−1,1] and interface Γ ∶ ( x1

0.5
)

2
+ ( x2

0.5
)

2
= 1

We set

u(x1, x2) = {
u0 = x2

1 + x2
2 if (x1, x2) ∈ Ω0

u1 = exp(x1) cos(x2) if (x1, x2) ∈ Ω1

A(x1, x2) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

A0 = 1000 [
x2

1 + x2
2 + 1 x2

1 + x2
2

x2
1 + x2

2 x2
1 + x2

2 + 2
] if (x1, x2) ∈ Ω0,

A1 =
1

1000
A0 if (x1, x2) ∈ Ω1,

λ(x1, x2) = {
λ0 = 1000 exp(x1)(x

2
1 + x2

2 + 3) sin(x2) if (x1, x2) ∈ Ω0,
λ1 =

1
1000

λ0 if (x1, x2) ∈ Ω1.

M = 225 interior points in the computational domain Ω
Mb = 60 points on the boundary ∂Ω
MΓ = 60 points on the interface Γ



Ndeg ∥uIIM − u∥∞ (N, Np) ∥uN − u∥∞ ∥uN − u∥2

65536 8.008E−05 (30, 150) 5.259E−05 9.038E−06
262144 2.091E−05 (40, 200) 1.661E−05 2.352E−06

Table: u: Exact solution. uIIM : Solution obtained by IIM. Ndeg = 65536 and 262144
correspond to m = 256 and m = 512. uN : Solution obtained from DCSNN model.



Ndeg ∥uIIM − u∥∞ (N, Np) ∥uN − u∥∞ ∥uN − u∥2

65536 8.008E−05 (30, 150) 5.259E−05 9.038E−06
262144 2.091E−05 (40, 200) 1.661E−05 2.352E−06

Table: u: Exact solution. uIIM : Solution obtained by IIM. Ndeg = 65536 and 262144
correspond to m = 256 and m = 512. uN : Solution obtained from DCSNN model.



Example 2: 2D Problem with complicated geometry

Ndeg ∥uFEM − u∥∞ ∥∇uFEM −∇u∥∞ (N, Np) ∥uN − u∥∞ ∥∇uN −∇u∥∞
25600 9.400E−05 1.433E−03 (10, 50) 3.490E−06 6.087E−06
102400 2.600E−05 6.890E−04 (20, 100) 1.998E−07 6.318E−07

Table: u: Exact solution. uFEM : Solution obtained by FEM. Ndeg = 25600 and 102400
correspond to m = 160 and m = 320. uN : Solution obtained from DCSNN model.



Example 3: 3D Problem

The exact solution is chosen as

u(x1, x2, x3) =

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

u0 = exp(x1 + x2 + x3) if (x1, x2, x3) ∈ Ω0,
u1 = sin x1 sin x2 sin x3 if (x1, x2, x3) ∈ Ω1,
u2 = cos x1 cos x2 cos x3 if (x1, x2, x3) ∈ Ω2,
u3 = cosh x1 cosh x2 cosh x3 if (x1, x2, x3) ∈ Ω3,
u4 = sinh x1 sinh x2 sinh x3 if (x1, x2, x3) ∈ Ω4.

(N, Np) ∥uN − u∥∞ ∥uN − u∥2

(40, 240) 2.337E−04 3.696E−05
(50, 300) 1.951E−05 4.715E−06

Table: u: Exact solution. uN : Solution obtained from DCSNN model.
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