A Discontinuity Capturing Shallow Neural Network for Anisotropic Elliptic Interface Problems

Wei-Fan Hu
wfhu@math.ncu.edu.tw

Department of Mathematics
National Central University
Taiwan

Anisotropic Elliptic Interface Problems

- The d-dimensional anisotropic elliptic interface problem is described by

$$
\begin{cases}\nabla \cdot(A(\mathbf{x}) \nabla u(\mathbf{x}))-\lambda(\mathbf{x}) u(\mathbf{x})=f(\mathbf{x}) & \text { in } \Omega=\bigcup_{\ell=0}^{L} \Omega_{\ell} \subset \mathbb{R}^{d} \\ {[u]=v_{\ell}, \quad[A \nabla u \cdot \mathbf{n}]=w_{\ell}} & \text { on } \Gamma_{\ell} \subset \mathbb{R}^{d-1} \text { for } \ell=1,2, \cdots, L \\ u(\mathbf{x})=g(\mathbf{x}) & \text { on } \partial \Omega \subset \mathbb{R}^{d-1}\end{cases}
$$

- $A(\mathbf{x}) \in \mathbb{R}^{d \times d}$ is symmetric positive definite and $\lambda>0$
- [.] denotes the quantity of jump discontinuity
- Obviously, the solution u is discontinuous across all interfaces

L-Layer Deep Neural Network Architecture

input layer
hidden layer
output layer

L-Layer Deep Neural Network Architecture

input layer
hidden layer
output layer

- Define $\mathbf{x}^{[0]}=\mathbf{x}$ and $\mathcal{N}_{k}\left(\mathbf{x}^{[k-1]}\right)=W^{[k]} \mathbf{x}^{[k-1]}+\mathbf{b}^{[k]}$

L-Layer Deep Neural Network Architecture

input layer hidden layer output layer

- Define $\mathbf{x}^{[0]}=\mathbf{x}$ and $\mathcal{N}_{k}\left(\mathbf{x}^{[k-1]}\right)=W^{[k]} \mathbf{x}^{[k-1]}+\mathbf{b}^{[k]}$
- Neural network approximator $u_{\mathcal{N}}(\mathbf{x})=\mathcal{N}_{L-1} \circ\left(\sigma \circ \mathcal{N}_{L-2}\right) \circ \cdots \circ\left(\sigma \circ \mathcal{N}_{1}\right)(\mathbf{x})$

L-Layer Deep Neural Network Architecture

input layer
hidden layer
output layer

- Define $\mathbf{x}^{[0]}=\mathbf{x}$ and $\mathcal{N}_{k}\left(\mathbf{x}^{[k-1]}\right)=W^{[k]} \mathbf{x}^{[k-1]}+\mathbf{b}^{[k]}$
- Neural network approximator $u_{\mathcal{N}}(\mathbf{x})=\mathcal{N}_{L-1} \circ\left(\sigma \circ \mathcal{N}_{L-2}\right) \circ \cdots \circ\left(\sigma \circ \mathcal{N}_{1}\right)(\mathbf{x})$
- $u_{\mathcal{N}}$ consists of composition of continuous functions, so $u_{\mathcal{N}}$ is continuous

L-Layer Deep Neural Network Architecture

input layer
hidden layer
output layer

- Define $\mathbf{x}^{[0]}=\mathbf{x}$ and $\mathcal{N}_{k}\left(\mathbf{x}^{[k-1]}\right)=W^{[k]} \mathbf{x}^{[k-1]}+\mathbf{b}^{[k]}$
- Neural network approximator $u_{\mathcal{N}}(\mathbf{x})=\mathcal{N}_{L-1} \circ\left(\sigma \circ \mathcal{N}_{L-2}\right) \circ \cdots \circ\left(\sigma \circ \mathcal{N}_{1}\right)(\mathbf{x})$
- $u_{\mathcal{N}}$ consists of composition of continuous functions, so $u_{\mathcal{N}}$ is continuous

Question: How to approximate a discontinuous function using neural net approximation?

Continuous Function Extension

- Consider a d-dimensional, piecewise continuous, scalar function $u(\mathbf{x})$ in the domain $\Omega=\Omega^{-} \cup \Omega^{+}$defined by

$$
u(\mathbf{x})= \begin{cases}u^{-}(\mathbf{x}) & \text { if } \mathbf{x} \in \Omega^{-} \\ u^{+}(\mathbf{x}) & \text { if } \mathbf{x} \in \Omega^{+}\end{cases}
$$

where u^{-}and u^{+}are both smooth functions in their corresponding subdomains

Continuous Function Extension

- Consider a d-dimensional, piecewise continuous, scalar function $u(\mathbf{x})$ in the domain $\Omega=\Omega^{-} \cup \Omega^{+}$defined by

$$
u(\mathbf{x})= \begin{cases}u^{-}(\mathbf{x}) & \text { if } \mathbf{x} \in \Omega^{-} \\ u^{+}(\mathbf{x}) & \text { if } \mathbf{x} \in \Omega^{+}\end{cases}
$$

where u^{-}and u^{+}are both smooth functions in their corresponding subdomains

- Define the $(d+1)$-dimensional function using the augmentation variable (\mathbf{x}, z) as

$$
u_{\mathcal{N}}(\mathbf{x}, z)= \begin{cases}u^{-}(\mathbf{x}) & \text { if } z=-1 \\ u^{+}(\mathbf{x}) & \text { if } z=1\end{cases}
$$

where $\mathbf{x} \in \Omega$ and $z \in \mathbb{R}$

Continuous Function Extension

- Consider a d-dimensional, piecewise continuous, scalar function $u(\mathbf{x})$ in the domain $\Omega=\Omega^{-} \cup \Omega^{+}$defined by

$$
u(\mathbf{x})= \begin{cases}u^{-}(\mathbf{x}) & \text { if } \mathbf{x} \in \Omega^{-} \\ u^{+}(\mathbf{x}) & \text { if } \mathbf{x} \in \Omega^{+}\end{cases}
$$

where u^{-}and u^{+}are both smooth functions in their corresponding subdomains

- Define the $(d+1)$-dimensional function using the augmentation variable (x, z) as

$$
u_{\mathcal{N}}(\mathbf{x}, z)= \begin{cases}u^{-}(\mathbf{x}) & \text { if } z=-1 \\ u^{+}(\mathbf{x}) & \text { if } z=1\end{cases}
$$

where $\mathbf{x} \in \Omega$ and $z \in \mathbb{R}$

- Note that, both u^{-}and u^{+}are now regarded as smooth extension over the entire domain Ω, so the augmented function $u_{\mathcal{N}}(x, z)$ is assumed to be continuous on the domain $\Omega \times \mathbb{R}$

Continuous Function Extension

- Consider a d-dimensional, piecewise continuous, scalar function $u(\mathbf{x})$ in the domain $\Omega=\Omega^{-} \cup \Omega^{+}$defined by

$$
u(\mathbf{x})= \begin{cases}u^{-}(\mathbf{x}) & \text { if } \mathbf{x} \in \Omega^{-} \\ u^{+}(\mathbf{x}) & \text { if } \mathbf{x} \in \Omega^{+}\end{cases}
$$

where u^{-}and u^{+}are both smooth functions in their corresponding subdomains

- Define the $(d+1)$-dimensional function using the augmentation variable (x, z) as

$$
u_{\mathcal{N}}(\mathbf{x}, z)= \begin{cases}u^{-}(\mathbf{x}) & \text { if } z=-1 \\ u^{+}(\mathbf{x}) & \text { if } z=1\end{cases}
$$

where $\mathbf{x} \in \Omega$ and $z \in \mathbb{R}$

- Note that, both u^{-}and u^{+}are now regarded as smooth extension over the entire domain Ω, so the augmented function $u_{\mathcal{N}}(x, z)$ is assumed to be continuous on the domain $\Omega \times \mathbb{R}$
- u can be rewritten in terms of the augmented function as

$$
u(\mathbf{x})= \begin{cases}u_{\mathcal{N}}(\mathbf{x},-1) & \text { if } \mathbf{x} \in \Omega^{-} \\ u_{\mathcal{N}}(\mathbf{x}, 1) & \text { if } \mathbf{x} \in \Omega^{+}\end{cases}
$$

- Let $u(x)= \begin{cases}u^{-}(x)=\sin (2 \pi x) & \text { if } x \in\left[0, \frac{1}{2}\right) \\ u^{+}(x)=\cos (2 \pi x) & \text { if } x \in\left[\frac{1}{2}, 1\right]\end{cases}$

$$
u_{\mathcal{N}}(x, z)
$$

- Let $u(x)= \begin{cases}u^{-}(x)=\sin (2 \pi x) & \text { if } x \in\left[0, \frac{1}{2}\right) \\ u^{+}(x)=\cos (2 \pi x) & \text { if } x \in\left[\frac{1}{2}, 1\right]\end{cases}$
- We can simply find $u_{\mathcal{N}}(x, z)=\frac{1-z}{2} u^{-}(x)+\frac{1+z}{2} u^{+}(x)$

$$
u_{\mathcal{N}}(x, z)
$$

- Let $u(x)= \begin{cases}u^{-}(x)=\sin (2 \pi x) & \text { if } x \in\left[0, \frac{1}{2}\right) \\ u^{+}(x)=\cos (2 \pi x) & \text { if } x \in\left[\frac{1}{2}, 1\right]\end{cases}$
- We can simply find $u_{\mathcal{N}}(x, z)=\frac{1-z}{2} u^{-}(x)+\frac{1+z}{2} u^{+}(x)$
- There exists infinitely many such a function that has its restriction to be u

$$
u_{\mathcal{N}}(x, z)
$$

- Let $u(x)= \begin{cases}u^{-}(x)=\sin (2 \pi x) & \text { if } x \in\left[0, \frac{1}{2}\right) \\ u^{+}(x)=\cos (2 \pi x) & \text { if } x \in\left[\frac{1}{2}, 1\right]\end{cases}$
- We can simply find $u_{\mathcal{N}}(x, z)=\frac{1-z}{2} u^{-}(x)+\frac{1+z}{2} u^{+}(x)$
- There exists infinitely many such a function that has its restriction to be u
- Piecewise continuous functions with arbitrary many pieces can be done by simply labelling various z values

$$
u_{\mathcal{N}}(x, z)
$$

- Let $u(x)= \begin{cases}u^{-}(x)=\sin (2 \pi x) & \text { if } x \in\left[0, \frac{1}{2}\right) \\ u^{+}(x)=\cos (2 \pi x) & \text { if } x \in\left[\frac{1}{2}, 1\right]\end{cases}$
- We can simply find $u_{\mathcal{N}}(x, z)=\frac{1-z}{2} u^{-}(x)+\frac{1+z}{2} u^{+}(x)$
- There exists infinitely many such a function that has its restriction to be u
- Piecewise continuous functions with arbitrary many pieces can be done by simply labelling various z values
Remaining issue: How to construct the augmented function $u_{\mathcal{N}}$ using an approximation of neural network?

Discontinuity Capturing Shallow Neural Network

input layer hidden layer output layer

Discontinuity Capturing Shallow Neural Network

input layer hidden layer output layer

- DCSNN approximator $u_{\mathcal{N}}(\mathbf{x}, z)=W^{[2]} \sigma\left(W^{[1]}[\mathbf{x}, z]+\mathbf{b}^{[1]}\right)+\mathbf{b}^{[2]}$

Discontinuity Capturing Shallow Neural Network

input layer hidden layer output layer

- DCSNN approximator $u_{\mathcal{N}}(\mathbf{x}, z)=W^{[2]} \sigma\left(W^{[1]}[\mathbf{x}, z]+\mathbf{b}^{[1]}\right)+\mathbf{b}^{[2]}$
- N neurons are employed in the hidden layer

Discontinuity Capturing Shallow Neural Network

input layer hidden layer output layer

- DCSNN approximator $u_{\mathcal{N}}(\mathbf{x}, z)=W^{[2]} \sigma\left(W^{[1]}[\mathbf{x}, z]+\mathbf{b}^{[1]}\right)+\mathbf{b}^{[2]}$
- N neurons are employed in the hidden layer
- Weight: $W^{[1]} \in \mathbb{R}^{N \times(d+1)}, W^{[2]} \in \mathbb{R}^{1 \times N} ;$ bias: $\mathbf{b}^{[1]} \in \mathbb{R}^{N \times 1}, \mathbf{b}^{[2]} \in \mathbb{R}$

Discontinuity Capturing Shallow Neural Network

input layer hidden layer output layer

- DCSNN approximator $u_{\mathcal{N}}(\mathbf{x}, z)=W^{[2]} \sigma\left(W^{[1]}[\mathbf{x}, z]+\mathbf{b}^{[1]}\right)+\mathbf{b}^{[2]}$
- N neurons are employed in the hidden layer
- Weight: $W^{[1]} \in \mathbb{R}^{N \times(d+1)}, W^{[2]} \in \mathbb{R}^{1 \times N}$; bias: $\mathbf{b}^{[1]} \in \mathbb{R}^{N \times 1}, \mathbf{b}^{[2]} \in \mathbb{R}$
- Total number of parameters $N_{p}=(d+3) N+1$

Training Method: Levenberg-Marquardt Method

- Collecting all training parameters in the vector $\mathbf{p} \in \mathbb{R}^{N_{p}}$

Training Method: Levenberg-Marquardt Method

- Collecting all training parameters in the vector $\mathbf{p} \in \mathbb{R}^{N_{\rho}}$
- Given training points $\left\{\left(\mathbf{x}^{i}, z^{i}\right)\right\}_{i=1}^{M}$, where z^{i} is determined by identifying the category of \mathbf{x}^{i}, and target outputs $\left\{u\left(\mathbf{x}^{i}\right)\right\}_{i=1}^{M}$

Training Method: Levenberg-Marquardt Method

- Collecting all training parameters in the vector $\mathbf{p} \in \mathbb{R}^{N_{\rho}}$
- Given training points $\left\{\left(\mathbf{x}^{i}, z^{i}\right)\right\}_{i=1}^{M}$, where z^{i} is determined by identifying the category of \mathbf{x}^{i}, and target outputs $\left\{u\left(\mathbf{x}^{i}\right)\right\}_{i=1}^{M}$
- All training parameters can be learned via minimizing the mean squared error

$$
\operatorname{Loss}(\mathbf{p})=\frac{1}{M} \sum_{i=1}^{M}\left(u\left(\mathbf{x}^{i}\right)-u_{\mathcal{N}}\left(\mathbf{x}^{i}, z^{i} ; \mathbf{p}\right)\right)^{2}
$$

Training Method: Levenberg-Marquardt Method

- Collecting all training parameters in the vector $\mathbf{p} \in \mathbb{R}^{N_{\rho}}$
- Given training points $\left\{\left(\mathbf{x}^{i}, z^{i}\right)\right\}_{i=1}^{M}$, where z^{i} is determined by identifying the category of \mathbf{x}^{i}, and target outputs $\left\{u\left(\mathbf{x}^{i}\right)\right\}_{i=1}^{M}$
- All training parameters can be learned via minimizing the mean squared error

$$
\operatorname{Loss}(\mathbf{p})=\frac{1}{M} \sum_{i=1}^{M}\left(u\left(\mathbf{x}^{i}\right)-u_{\mathcal{N}}\left(\mathbf{x}^{i}, z^{i} ; \mathbf{p}\right)\right)^{2}
$$

- Levenberg-Marquardt method

$$
\mathbf{p}^{(k+1)}=\mathbf{p}^{(k)}+\left(J^{T} J+\mu /\right)^{-1} \underbrace{\left[J^{T}\left(\mathbf{u}-\mathbf{u}_{\mathcal{N}}\left(\mathbf{p}^{(k)}\right)\right)\right]}_{-\frac{1}{2} \nabla \operatorname{Loss}\left(\mathbf{p}^{(k)}\right)}
$$

- Jacobian matrix $J=\partial \mathbf{u}_{\mathcal{N}} / \partial \mathbf{p} \in \mathbb{R}^{M \times N_{p}}$ (typically $M>N_{p}$); the computation of J can be done using auto differentiation

Training Method: Levenberg-Marquardt Method

- Collecting all training parameters in the vector $\mathbf{p} \in \mathbb{R}^{N_{p}}$
- Given training points $\left\{\left(\mathbf{x}^{i}, z^{i}\right)\right\}_{i=1}^{M}$, where z^{i} is determined by identifying the category of \mathbf{x}^{i}, and target outputs $\left\{u\left(\mathbf{x}^{i}\right)\right\}_{i=1}^{M}$
- All training parameters can be learned via minimizing the mean squared error

$$
\operatorname{Loss}(\mathbf{p})=\frac{1}{M} \sum_{i=1}^{M}\left(u\left(\mathbf{x}^{i}\right)-u_{\mathcal{N}}\left(\mathbf{x}^{i}, z^{i} ; \mathbf{p}\right)\right)^{2}
$$

- Levenberg-Marquardt method

$$
\mathbf{p}^{(k+1)}=\mathbf{p}^{(k)}+\left(J^{T} J+\mu /\right)^{-1} \underbrace{\left[J^{T}\left(\mathbf{u}-\mathbf{u}_{\mathcal{N}}\left(\mathbf{p}^{(k)}\right)\right)\right]}_{-\frac{1}{2} \nabla \operatorname{Loss}\left(\mathbf{p}^{(k)}\right)}
$$

- Jacobian matrix $J=\partial \mathbf{u}_{\mathcal{N}} / \partial \mathbf{p} \in \mathbb{R}^{M \times N_{p}}$ (typically $M>N_{p}$); the computation of J can be done using auto differentiation
- The linear system (the second term) in each iteration is solved using Singular Value Decomposition or Cholesky factorization

Testing Example

- The 1 D target function is given by $u(x)= \begin{cases}\sin (2 \pi x) & \text { if } x \in\left[0, \frac{1}{2}\right) \\ \cos (2 \pi x) & \text { if } x \in\left[\frac{1}{2}, 1\right]\end{cases}$
- Only $N=5$ neurons are used in the hidden layer, thus the total number of parameters $N_{p}=21$
- 100 randomly sampled training points in the interval $[0,1]$
- Sigmoid activation function
- Terminate the training iteration when $\operatorname{Loss}(\mathbf{p})<10^{-12}$

Testing Example

- The 1 D target function is given by $u(x)= \begin{cases}\sin (2 \pi x) & \text { if } x \in\left[0, \frac{1}{2}\right) \\ \cos (2 \pi x) & \text { if } x \in\left[\frac{1}{2}, 1\right]\end{cases}$
- Only $N=5$ neurons are used in the hidden layer, thus the total number of parameters $N_{p}=21$
- 100 randomly sampled training points in the interval $[0,1]$
- Sigmoid activation function
- Terminate the training iteration when $\operatorname{Loss}(\mathbf{p})<10^{-12}$

Theorem (Meer et al. 2021)

Consider the well-posed PDE of order k given by
$\begin{cases}\mathcal{L}(u)=f & \text { in the domain } \Omega, \\ \mathcal{B}(u)=g & \text { on the boundary } \partial \Omega .\end{cases}$
Let the exact solution of this PDE be given by u and let the loss functional be given by

$$
\operatorname{Loss}(\hat{u})=\frac{1}{|\Omega|} \int_{\Omega}|\mathcal{L}(\hat{u})-f|^{2} \mathrm{~d} \mathbf{x}+\frac{1}{|\partial \Omega|} \int_{\partial \Omega}|\mathcal{B}(\hat{u})-g|^{2} \mathrm{~d} \mathbf{x} .
$$

Consider some approximate solution \hat{u} of which the first k (partial) derivatives exist and have finite L_{2} norm. Then, for any $\varepsilon>0$ there exists a $\delta(\varepsilon)>0$ such that $\operatorname{Loss}(\hat{u})<\delta \Longrightarrow\|\hat{u}-u\|<\varepsilon$.

Physics-Informed Learning Machine

- Recall

$$
\begin{cases}\nabla \cdot(A(\mathbf{x}) \nabla u(\mathbf{x}))-\lambda(\mathbf{x}) u(\mathbf{x})=f(\mathbf{x}) & \text { in } \Omega=\bigcup_{\ell=0}^{L} \Omega_{\ell} \subset \mathbb{R}^{d} \\ {[u]=v_{\ell}, \quad[A \nabla u \cdot \mathbf{n}]=w_{\ell}} & \text { on } \Gamma_{\ell} \subset \mathbb{R}^{d-1} \text { for } \ell=1,2, \cdots, L \\ u(\mathbf{x})=g(\mathbf{x}) & \text { on } \partial \Omega \subset \mathbb{R}^{d-1}\end{cases}
$$

Physics-Informed Learning Machine

- Recall

$$
\begin{cases}\nabla \cdot(A(\mathbf{x}) \nabla u(\mathbf{x}))-\lambda(\mathbf{x}) u(\mathbf{x})=f(\mathbf{x}) & \text { in } \Omega=\bigcup_{\ell=0}^{L} \Omega_{\ell} \subset \mathbb{R}^{d} \\ {[u]=v_{\ell}, \quad[A \nabla u \cdot \mathbf{n}]=w_{\ell}} & \text { on } \Gamma_{\ell} \subset \mathbb{R}^{d-1} \text { for } \ell=1,2, \cdots, L \\ u(\mathbf{x})=g(\mathbf{x}) & \text { on } \partial \Omega \subset \mathbb{R}^{d-1}\end{cases}
$$

- $\left[u_{\mathcal{N}}\right]=u_{\mathcal{N}}\left(\mathbf{x}, z_{0}\right)-u_{\mathcal{N}}\left(\mathbf{x}, z_{\ell}\right)$ for $\mathbf{x} \in \Gamma$; the same manner applies for $\left[A \nabla_{\mathrm{x}} u_{\mathcal{N}} \cdot \mathbf{n}\right]$

Physics-Informed Learning Machine

- Recall

$$
\begin{cases}\nabla \cdot(A(\mathbf{x}) \nabla u(\mathbf{x}))-\lambda(\mathbf{x}) u(\mathbf{x})=f(\mathbf{x}) & \text { in } \Omega=\bigcup_{\ell=0}^{L} \Omega_{\ell} \subset \mathbb{R}^{d} \\ {[u]=v_{\ell}, \quad[A \nabla u \cdot \mathbf{n}]=w_{\ell}} & \text { on } \Gamma_{\ell} \subset \mathbb{R}^{d-1} \text { for } \ell=1,2, \cdots, L \\ u(\mathbf{x})=g(\mathbf{x}) & \text { on } \partial \Omega \subset \mathbb{R}^{d-1}\end{cases}
$$

- $\left[u_{\mathcal{N}}\right]=u_{\mathcal{N}}\left(\mathbf{x}, z_{0}\right)-u_{\mathcal{N}}\left(\mathbf{x}, z_{\ell}\right)$ for $\mathbf{x} \in \Gamma$; the same manner applies for $\left[A \nabla_{\mathrm{x}} u_{\mathcal{N}} \cdot \mathbf{n}\right]$
- Given training points $\left\{\left(\mathbf{x}^{i}, z^{i}\right)\right\}_{i=1}^{M}$ in $\Omega,\left\{\mathbf{x}_{\partial \Omega}^{j}\right\}_{j=1}^{M_{b}}$ on $\partial \Omega$, and $\left\{\mathbf{x}_{\Gamma_{\ell}}^{k}\right\}_{k=1}^{M_{\Gamma_{\ell}}}$ along Γ_{ℓ}

Physics-Informed Learning Machine

- Recall

$$
\begin{cases}\nabla \cdot(A(\mathbf{x}) \nabla u(\mathbf{x}))-\lambda(\mathbf{x}) u(\mathbf{x})=f(\mathbf{x}) & \text { in } \Omega=\bigcup_{\ell=0}^{L} \Omega_{\ell} \subset \mathbb{R}^{d} \\ {[u]=v_{\ell}, \quad[A \nabla u \cdot \mathbf{n}]=w_{\ell}} & \text { on } \Gamma_{\ell} \subset \mathbb{R}^{d-1} \text { for } \ell=1,2, \cdots, L \\ u(\mathbf{x})=g(\mathbf{x}) & \text { on } \partial \Omega \subset \mathbb{R}^{d-1}\end{cases}
$$

- $\left[u_{\mathcal{N}}\right]=u_{\mathcal{N}}\left(\mathbf{x}, z_{0}\right)-u_{\mathcal{N}}\left(\mathbf{x}, z_{\ell}\right)$ for $\mathbf{x} \in \Gamma$; the same manner applies for $\left[A \nabla_{\mathrm{x}} u_{\mathcal{N}} \cdot \mathbf{n}\right]$
- Given training points $\left\{\left(\mathbf{x}^{i}, z^{i}\right)\right\}_{i=1}^{M}$ in $\Omega,\left\{\mathbf{x}_{\partial \Omega}^{j}\right\}_{j=1}^{M_{b}}$ on $\partial \Omega$, and $\left\{\mathbf{x}_{\Gamma_{\ell}}^{k}\right\}_{k=1}^{M_{\Gamma_{\ell}}}$ along Γ_{ℓ}
- Solving the differential equation is converted to the optimization problem

$$
\begin{aligned}
\operatorname{Loss}(\mathbf{p}) & =\frac{1}{M} \sum_{i=1}^{M}\left[\nabla_{\mathbf{x}} \cdot\left(A\left(\mathbf{x}^{i}\right) \nabla_{\mathbf{x}} u_{\mathcal{N}}\left(\mathbf{x}^{i}, z^{i}\right)\right)-\lambda\left(\mathbf{x}^{i}\right) u_{\mathcal{N}}\left(\mathbf{x}^{i}, z^{i}\right)-f\left(\mathbf{x}^{i}\right)\right]^{2} \\
& +\frac{1}{M_{b}} \sum_{j=1}^{M_{b}}\left[u_{\mathcal{N}}\left(\mathbf{x}_{\partial \Omega}^{j}, z_{0}\right)-g\left(\mathbf{x}_{\partial \Omega}^{j}\right)\right]^{2} \\
& +\sum_{\ell=1}^{L} \frac{1}{M_{\Gamma_{\ell}}}\left(\sum_{k=1}^{M_{\Gamma_{\ell}}}\left(\left[u_{\mathcal{N}}\right]-v_{\ell}\left(\mathbf{x}_{\Gamma_{\ell}}^{k}\right)\right)^{2}+\left(\left[A \nabla_{\mathbf{x}} u_{\mathcal{N}} \cdot \mathbf{n}\right]-w_{\ell}\left(\mathbf{x}_{\Gamma_{\ell}}^{k}\right)\right)^{2}\right)
\end{aligned}
$$

Example 1: 2D Problem with Regular Domain

- Domain $\Omega=[-1,1] \times[-1,1]$ and interface $\Gamma:\left(\frac{x_{1}}{0.5}\right)^{2}+\left(\frac{x_{2}}{0.5}\right)^{2}=1$
- We set

$$
\begin{aligned}
& u\left(x_{1}, x_{2}\right)= \begin{cases}u_{0}=x_{1}^{2}+x_{2}^{2} & \text { if }\left(x_{1}, x_{2}\right) \in \Omega_{0} \\
u_{1}=\exp \left(x_{1}\right) \cos \left(x_{2}\right) & \text { if }\left(x_{1}, x_{2}\right) \in \Omega_{1}\end{cases} \\
& A\left(x_{1}, x_{2}\right)= \begin{cases}A_{0}=1000\left[\begin{array}{cc}
x_{1}^{2}+x_{2}^{2}+1 & x_{1}^{2}+x_{2}^{2} \\
x_{1}^{2}+x_{2}^{2} & x_{1}^{2}+x_{2}^{2}+2
\end{array}\right] & \text { if }\left(x_{1}, x_{2}\right) \in \Omega_{0}, \\
A_{1}=\frac{1}{1000} A_{0} & \text { if }\left(x_{1}, x_{2}\right) \in \Omega_{1},\end{cases} \\
& \lambda\left(x_{1}, x_{2}\right)= \begin{cases}\lambda_{0}=1000 \exp \left(x_{1}\right)\left(x_{1}^{2}+x_{2}^{2}+3\right) \sin \left(x_{2}\right) & \text { if }\left(x_{1}, x_{2}\right) \in \Omega_{0}, \\
\lambda_{1}=\frac{1}{1000} \lambda_{0} & \text { if }\left(x_{1}, x_{2}\right) \in \Omega_{1} .\end{cases}
\end{aligned}
$$

- $M=225$ interior points in the computational domain Ω
$M_{b}=60$ points on the boundary $\partial \Omega$
$M_{\Gamma}=60$ points on the interface 「

$N_{\text {deg }}$	$\left\\|u_{I I M}-u\right\\|_{\infty}$	$\left(N, N_{p}\right)$	$\left\\|u_{\mathcal{N}}-u\right\\|_{\infty}$	$\left\\|u_{\mathcal{N}}-u\right\\|_{2}$
65536	$8.008 \mathrm{E}-05$	$(30,150)$	$5.259 \mathrm{E}-05$	$9.038 \mathrm{E}-06$
262144	$2.091 \mathrm{E}-05$	$(40,200)$	$1.661 \mathrm{E}-05$	$2.352 \mathrm{E}-06$

Table: u : Exact solution. $u_{\text {IIM }}$: Solution obtained by IIM. $N_{\text {deg }}=65536$ and 262144 correspond to $m=256$ and $m=512$. $u_{\mathcal{N}}$: Solution obtained from DCSNN model.

Example 2: 2D Problem with complicated geometry

$u_{\mathcal{N}}$

$$
\left|u_{\mathcal{N}}-u\right|
$$

$N_{\text {deg }}$	$\left\\|u_{F E M}-u\right\\|_{\infty}$	$\left\\|\nabla u_{F E M}-\nabla u\right\\|_{\infty}$	$\left(N, N_{p}\right)$	$\left\\|u_{\mathcal{N}}-u\right\\|_{\infty}$	$\left\\|\nabla u_{\mathcal{N}}-\nabla u\right\\|_{\infty}$
25600	$9.400 \mathrm{E}-05$	$1.433 \mathrm{E}-03$	$(10,50)$	$3.490 \mathrm{E}-06$	$6.087 \mathrm{E}-06$
102400	$2.600 \mathrm{E}-05$	$6.890 \mathrm{E}-04$	$(20,100)$	$1.998 \mathrm{E}-07$	$6.318 \mathrm{E}-07$

Table: u : Exact solution. $u_{F E M}$: Solution obtained by FEM. $N_{\text {deg }}=25600$ and 102400 correspond to $m=160$ and $m=320$. $u_{\mathcal{N}}$: Solution obtained from DCSNN model.

Example 3: 3D Problem

- The exact solution is chosen as

$$
u\left(x_{1}, x_{2}, x_{3}\right)= \begin{cases}u_{0}=\exp \left(x_{1}+x_{2}+x_{3}\right) & \text { if }\left(x_{1}, x_{2}, x_{3}\right) \in \Omega_{0} \\ u_{1}=\sin x_{1} \sin x_{2} \sin x_{3} & \text { if }\left(x_{1}, x_{2}, x_{3}\right) \in \Omega_{1} \\ u_{2}=\cos x_{1} \cos x_{2} \cos x_{3} & \text { if }\left(x_{1}, x_{2}, x_{3}\right) \in \Omega_{2} \\ u_{3}=\cosh x_{1} \cosh x_{2} \cosh x_{3} & \text { if }\left(x_{1}, x_{2}, x_{3}\right) \in \Omega_{3} \\ u_{4}=\sinh x_{1} \sinh x_{2} \sinh x_{3} & \text { if }\left(x_{1}, x_{2}, x_{3}\right) \in \Omega_{4}\end{cases}
$$

$\left(N, N_{p}\right)$	$\left\\|u_{\mathcal{N}}-u\right\\|_{\infty}$	$\left\\|u_{\mathcal{N}}-u\right\\|_{2}$
$(40,240)$	$2.337 \mathrm{E}-04$	$3.696 \mathrm{E}-05$
$(50,300)$	$1.951 \mathrm{E}-05$	$4.715 \mathrm{E}-06$

References

1. W.-F. Hu, T.-S. Lin, and M.-C. Lai

A discontinuity capturing shallow neural network for elliptic interface problems arXiv: 2106.05587
2. W.-F. Hu, T.-S. Lin, and M.-C. Lai

Solving anisotropic elliptic interface problems by machine learning in preparation

Thank you for your attention!

